Larson 7.7 L'Hôpital's Rule

Name:

Copy exercises and show all work on separate paper.

In Exercises 1-6, evaluate the limit (a) using techniques from Chapters 1 and 3 and (b) using L'Hôpital's Rule.

1.
$$\lim_{x\to 3} \frac{2(x-3)}{x^2-9}$$

1.
$$\lim_{x \to 3} \frac{2(x-3)}{x^2-9}$$
 2. $\lim_{x \to -1} \frac{2x^2-x-3}{x+1}$

3.
$$\lim_{x \to 3} \frac{\sqrt{x+1}-2}{x-3}$$
 4. $\lim_{x \to 0} \frac{\sin 4x}{2x}$

4.
$$\lim_{r\to 0} \frac{\sin 4x}{2r}$$

5.
$$\lim_{x \to \infty} \frac{5x^2 - 3x + 1}{3x^2 - 5}$$
 6. $\lim_{x \to \infty} \frac{2x + 1}{4x^2 + x}$

6.
$$\lim_{x \to \infty} \frac{2x+1}{4x^2+1}$$

In Exercises 7-26, evaluate the limit, using L'Hôpital's Rule if necessary. (In Exercise 13, n is a positive integer.)

7.
$$\lim_{x\to 2} \frac{x^2-x-2}{x-2}$$

7.
$$\lim_{x \to 2} \frac{x^2 - x - 2}{x - 2}$$
 8. $\lim_{x \to -1} \frac{x^2 - x - 2}{x + 1}$

9.
$$\lim_{x\to 0} \frac{\sqrt{4-x^2}-2}{x}$$
 10. $\lim_{x\to 2^-} \frac{\sqrt{4-x^2}}{x-2}$

10.
$$\lim_{x\to 2^-} \frac{\sqrt{4-x^2}}{x-2}$$

11.
$$\lim_{x\to 0} \frac{e^x - (1-x)}{x}$$

11.
$$\lim_{x\to 0} \frac{e^x - (1-x)}{x}$$
 12. $\lim_{x\to 0^+} \frac{e^x - (1+x)}{x^3}$

13.
$$\lim_{x\to 0^+} \frac{e^x - (1+x)}{x^n}$$
 14. $\lim_{x\to 1} \frac{\ln x}{x^2 - 1}$

14.
$$\lim_{x\to 1} \frac{\ln x}{x^2-1}$$

$$15. \lim_{x\to 0} \frac{\sin 2x}{\sin 3x}$$

$$16. \lim_{x\to 0} \frac{\sin ax}{\sin bx}$$

17.
$$\lim_{x\to 0} \frac{\arcsin x}{x}$$

17.
$$\lim_{x \to 0} \frac{\arcsin x}{x}$$
 18. $\lim_{x \to 1} \frac{\arctan x - (\pi/4)}{x - 1}$

19.
$$\lim_{x \to \infty} \frac{3x^2 - 2x + 1}{2x^2 + 3}$$
 20. $\lim_{x \to \infty} \frac{x - 1}{x^2 + 2x + 3}$

20.
$$\lim_{x\to\infty}\frac{x-1}{x^2+2x+3}$$

21.
$$\lim_{x \to \infty} \frac{x^2 + 2x + 3}{x - 1}$$
 22. $\lim_{x \to \infty} \frac{x^2}{e^x}$

22.
$$\lim_{x\to\infty}\frac{x^2}{e^x}$$

23.
$$\lim_{x \to \infty} \frac{x}{\sqrt{x^2 + 1}}$$
 24. $\lim_{x \to \infty} \frac{\sin x}{x - \pi}$

24.
$$\lim_{x\to\infty}\frac{\sin x}{x-x}$$

25.
$$\lim_{x\to\infty}\frac{\ln x}{x}$$

$$26. \lim_{x\to\infty}\frac{e^x}{x}$$

Answers to Odd-Numbered Exercises

000.0	100.0	9£0.0	027.0	864.4	118.2	$\frac{x}{t(x \cdot \mathbf{u})}$	
1010	108	100	10⁴	10 ₅	10	х	·6t

25. 0 27.
$$0 \cdot \infty$$
, 0 29. $0 \cdot \infty$, 1 31. Not indeterminate, 0 35. $0 \cdot \infty$, 0 25. $0 \cdot \infty$, 0 27. $0 \cdot \infty$, 0 27. $0 \cdot \infty$, 0 27. $0 \cdot \infty$, 0 37. $0 \cdot \infty$, $0 \cdot \infty$

5. 0 27.
$$0 \cdot \infty$$
, 0 29. $0 \cdot \infty$, 1 31. Not indeterminate, 0 $3 \cdot \infty \cdot 0$ 25. $1 \cdot 0 \cdot \infty \cdot 0$ 37. $\infty - \infty$, $\infty - \infty$, $\infty \cdot 0$, 1 35. $1 \cdot 0 \cdot \infty \cdot 0$ 37. $\infty - \infty$, $\infty \cdot 0 \cdot 0$ 3. $\infty \cdot 0 \cdot 0$

1.52
$$\frac{5}{2}$$
 .71 $\frac{5}{2}$.72 $\frac{5}{2}$.73 $\frac{5}{2}$.21 ∞ .13. 13. 14. 15. $\frac{5}{2}$.21 0 .23. 1 0 .24. 1 0 .25. 1 0

In Exercises 27-40, describe the type of indeterminate form (if any) that is obtained with direct substitution. Then evaluate the limit, using L'Hôpital's Rule when necessary. (For a geometric approach to Exercise 27, see the article by John H. Mathews in the May, 1992 issue of The College Mathematics Journal.)

27.
$$\lim_{x\to 0^+} (-x \ln x)$$

28.
$$\lim_{x\to 0^+} x^2 \cot x$$

29.
$$\lim_{x \to \infty} \left(x \sin \frac{1}{x} \right)$$
 30. $\lim_{x \to \infty} x \tan \frac{1}{x}$

$$30. \lim_{x\to\infty} x \tan\frac{1}{x}$$

31.
$$\lim_{x\to 0^+} x^{1/x}$$

32.
$$\lim_{x\to 0^+} (e^x + x)^{1/x}$$

33.
$$\lim_{x\to\infty} x^{1/x}$$

34.
$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x$$

35.
$$\lim_{x\to 0^+} (1+x)^{1/x}$$

36.
$$\lim_{x \to \infty} (1 + x)^{1/x}$$

37.
$$\lim_{x\to 2^+} \left(\frac{8}{x^2-4} - \frac{x}{x-2} \right)$$

38.
$$\lim_{x\to 2^+} \left(\frac{1}{x^2-4} - \frac{\sqrt{x-1}}{x^2-4} \right)$$

39.
$$\lim_{x\to 1^+} \left(\frac{3}{\ln x} - \frac{2}{x-1}\right)$$
 40. $\lim_{x\to 0^+} \left(\frac{1}{x} - \frac{1}{x^2}\right)$

40.
$$\lim_{x\to 0^+} \left(\frac{1}{x} - \frac{1}{x^2}\right)^{-1}$$

In Exercises 43-48, use L'Hôpital's Rule to determine the comparative rates of increase of the functions

$$f(x) = x^m$$
, $g(x) = e^{nx}$, and $h(x) = (\ln x)^n$

where 0 < n, 0 < m, and $x \to \infty$. The limits obtained in these exercises suggest that $(\ln x)^n$ approaches infinity more slowly than x^m , which, in turn, approaches infinity more slowly than

43.
$$\lim_{x \to \infty} \frac{x^2}{e^{5x}}$$
 44. $\lim_{x \to \infty} \frac{x^3}{e^{2x}}$

44.
$$\lim_{x \to \infty} \frac{x^3}{e^{2x}}$$

45.
$$\lim_{x \to \infty} \frac{(\ln x)^3}{x}$$
 46. $\lim_{x \to \infty} \frac{(\ln x)^2}{x^3}$

46.
$$\lim_{x \to \infty} \frac{(\ln x)^2}{x^3}$$

47.
$$\lim_{x \to \infty} \frac{(\ln x)^n}{x^m}$$
 48. $\lim_{x \to \infty} \frac{x^m}{e^{nx}}$

48.
$$\lim_{x \to \infty} \frac{x^m}{a^{nx}}$$

49. Complete the table to show that x eventually "overpowers" $(\ln x)^4$.

x	10	10 ²	10 ⁴	10 ⁶	108	10 ¹⁰
$\frac{(\ln x)^4}{x}$						

50. Complete the table to show that e^x eventually "overpowers"

x	1	5	10	20	30	40	50	100
$\frac{e^x}{x^5}$								