Larson 7.1 Integration Review

Name:

Copy exercises and show all work on separate paper.

In Exercises 15-46, evaluate the indefinite integral.

15.
$$\int (-2x+5)^{3/2} dx$$
 16. $\int \frac{2}{(t-9)^2} dt$

16.
$$\int \frac{2}{(t-9)^2} dt$$

17.
$$\int \left[v + \frac{1}{(3v-1)^3}\right] dv$$
 18. $\int x\sqrt{4-2x^2} dx$

$$18. \int x\sqrt{4-2x^2}\,dx$$

19.
$$\int \frac{t^2 - 3}{-t^3 + 9t + 1} dt$$

$$20. \int \frac{2x}{x-4} dx$$

$$21. \int \frac{x^2}{x-1} dx$$

$$22. \int \frac{x+1}{\sqrt{x^2+2x-4}} dx$$

23.
$$\int \left(\frac{1}{3x-1} - \frac{1}{3x+1}\right) dx$$
 24. $\int \frac{e^x}{1+e^x} dx$

$$24. \int \frac{e^x}{1+e^x} dx$$

25.
$$\int (1 + 2x^2)^2 dx$$

$$26. \int x \left(1 + \frac{1}{x}\right)^3 dx$$

$$27. \int x(\cos 2\pi x^2) \, dx$$

28.
$$\int \sec 4u \, du$$

$$29. \int \csc \pi x \cot \pi x \, dx$$

$$30. \int \frac{\sin x}{\sqrt{\cos x}} dx$$

$$31. \int e^{5x} dx$$

$$32. \int \csc^2 x e^{\cot x} dx$$

$$33. \int \frac{2}{e^{-x}+1} dx$$

$$34. \int \frac{1}{2e^x - 3} dx$$

$$35. \int \frac{1+\sin x}{\cos x} dx$$

$$36. \int \frac{1}{\sec x - 1} dx$$

$$37. \int \frac{2t-1}{t^2+4} dt$$

$$38. \int \frac{3}{t^2+1} dt$$

$$39. \int \frac{-1}{\sqrt{1-(2t-1)^2}} dt$$

40.
$$\int \frac{1}{4+3x^2} dx$$

$$41. \int \frac{\tan(2/t)}{t^2} dt$$

$$42. \int \frac{e^{1/t}}{t^2} dt$$

43.
$$\int \frac{3}{\sqrt{6x-x^2}} dx$$

44.
$$\int \frac{1}{(x-1)\sqrt{4x^2-8x+3}} dx$$

45.
$$\int \frac{4}{4x^2 + 4x + 65} dx$$

46.
$$\int \frac{1}{\sqrt{2-2x-x^2}} dx$$

In Exercises 47-52, solve the differential equation

47.
$$\frac{dy}{dx} = (1 + e^x)^2$$

48.
$$\frac{dr}{dt} = \frac{(1 + e^t)^2}{e^t}$$

$$49. \ \frac{ds}{dt} = \frac{t}{\sqrt{1-t^4}}$$

50.
$$\frac{dy}{dt} = \frac{1}{x\sqrt{4x^2 - 1}}$$

51.
$$(4 + \tan^2 x)y' = \sec^2 x$$
 52. $y' = \tan^2 2x$

52.
$$y' = \tan^2 2$$

In Exercises 53-60, evaluate the definite integral.

53.
$$\int_0^{\pi/4} \cos 2x \, dx$$

$$54. \int_0^\pi \sin^2 t \cos t \, dt$$

55.
$$\int_0^1 xe^{-x^2} dx$$

$$56. \int_{1}^{e} \frac{1 - \ln x}{x} dx$$

57.
$$\int_0^4 \frac{2x}{\sqrt{x^2+9}} dx$$

58.
$$\int_{1}^{2} \frac{x-2}{x} dx$$

59.
$$\int_0^{2/\sqrt{3}} \frac{1}{4+9x^2} dx$$

60.
$$\int_0^4 \frac{1}{\sqrt{25-x^2}} dx$$

Answers to Odd-Numbered Exercises

81. (22
$$h$$
 .72 h .73 h .73 h .73 h .73 h .73 h .73

51.
$$y = \frac{1}{2} \arctan \frac{\tan x}{2} + C$$
 53. $\frac{1}{2}$

47.
$$y = \frac{1}{2}e^{2x} + 2e^x + x + C$$
 49. $s = \frac{1}{2} \operatorname{arcsin} t^2 + C$

43. 3 arcsin
$$\frac{x-3}{3} + C$$
 45. $\frac{1}{4}$ arctan $\frac{2x+1}{8} + C$

39.
$$-\frac{1}{2}$$
 arcsin(2t - 1) + C 41. $\frac{1}{2}$ ln $\left|\cos\frac{2}{t}\right|$ + C

37.
$$\ln(t^2+4)-\frac{1}{2}\arctan\frac{t}{2}+C$$

33.
$$2 \ln(1 + e^x) + C$$
 35. $\ln |\sec x(\sec x + \tan x)| + C$

26.
$$-\frac{1}{\pi}\csc \pi x + C$$
 31. $\frac{1}{5}e^{5x} + C$

25.
$$\frac{x}{15}(12x^4 + 20x^2 + 15) + C$$
 27. $\frac{1}{15}\sin 2\pi x^2 + C$

21.
$$\frac{1}{2}x^2 + x + \ln|x - 1| + C$$
 23. $\frac{1}{3}\ln\left|\frac{3x + 1}{3x - 1}\right| + C$

16.
$$-\frac{3}{2}\ln|-t^3+9t+1|+C$$

17.
$$\frac{1}{2}v^2 - \frac{1}{6(3v-1)^2} + C$$

13.
$$\int e^{u} du \qquad 15. -\frac{1}{5}(-2x+5)^{5/2} + C$$

$$z^1 = n \qquad \qquad z^1 = n$$

$$z^2 = n \qquad \qquad z^2 = n$$

$$nb n \text{ mis } \int \sqrt[n]{11} \qquad \frac{nb}{z_u - z_b} \int \sqrt[n]{e}$$