Quiz 10.1-10.3
2 points each. No calculator

Name: \qquad Key
per:
SOLUTIONS ON NEXT PAGE
(1) Find the arc length of the curve: $x=t^{2}, y=2 t^{2}+1,1 \leqslant t \leqslant 3$.
(a) $16 \sqrt{5}$
(b) 40
(C) 24
(d) $8 \sqrt{5}$
(e) None of these
(2) Graph the curve given by the parametric equations $x=t^{2}-1$ and $y=1-t^{2}$. if allow, it does
this first (e) None of these

(3) Find the corresponding rectangular equation by eliminating the parameter. $x=t^{2}+2, y=t^{2}-1$
(a) $x+y=1$
(b) $y=x+1$
(c) $x=y+1$
(d) $y=x-3$
(e) None of these with $x \geq 2$
(4) Find $\frac{d^{2} y}{d x^{2}}$ if $x=2 \cos \theta, y=\sin \theta$.
(a) $-\frac{1}{4} \csc ^{3} \theta$ (b) $\frac{1}{2} \csc ^{2} \theta$
(C) $-2 \sec ^{2} \theta$
(d) $\frac{1}{2} \cot \theta \csc \theta$
(e) None of these
(5) Convert the rectangular equation $x^{2}+y^{2}-2 y=0$ to polar form.
(a) $r=2 \cos \theta$
(b) $r=\frac{1}{2} \csc \theta$
(c) $r=2 \sin \theta$
(d) $r=-2 \sin \theta$
(d) None of these
(6) Find $\frac{d y}{d x}$ if $x=\sqrt{t}$ and $y=(t-1)^{3}$
(a) $3(t-1)^{2}$
(b) $\frac{1}{6 \sqrt{t}(t-1)^{2}}$
(c) $\frac{6(t-1)^{2}}{\sqrt{t}}$
(d) $6 \sqrt{t}(t-1)^{2}$
(e) None of these

Work Solutions

1. Arc length: $x=t^{2}, y=2 t^{2}+1,1 \leq t \leq 3$

$$
\begin{aligned}
& s=\int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t \begin{array}{l}
x^{\prime}(t)=2 t \\
y^{\prime}(t)=-4 t
\end{array} \\
&=\int_{3}^{3} \sqrt{(2 t)^{2}+(4 t)^{2}} d t \\
&=\int_{1}^{3^{3}} \sqrt{4 t^{2}+16 t^{2}} d t \\
&=\int_{1}^{3} t \sqrt{20} d t \\
&=1 /\left.t^{2} \cdot 2 \sqrt{5}\right|_{1} ^{3} \\
&=(9-1) \sqrt{5} \\
&-8 \sqrt{5}
\end{aligned}
$$

2.

$$
\begin{aligned}
& x=t^{2}-1 \quad-x=1-t^{2} \\
& y=1-t^{2} \rightarrow y=-x \\
& \quad y \leq 1, x \geq-1 \\
& t=0 \Rightarrow(-1,1) \\
& t=1 \Rightarrow(0,0)
\end{aligned}
$$

$$
\text { 3. } \begin{array}{rl}
x=t^{2}+2 & y=t^{2}-1 \\
& t^{2}=x-2 \\
t=0 \Rightarrow(2,-1) & y=(x-2)-1 \\
t=1 \Rightarrow(3,0) & y-3 \\
t=1 & \neq 1 \\
t=-1 & =(3,0) \\
& x \geq 2
\end{array}
$$

4.

$$
\begin{aligned}
& \text { 4. } x=2 \cos \theta \quad y=\sin \theta \\
& \frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{\cos \theta}{-2 \sin \theta}=-\frac{1}{2} \cot \theta \\
& \frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d \theta}[d y d x]}{d x / d \theta}=\frac{\frac{1}{2} \csc ^{2} \theta}{-2 \sin \theta} \\
& =-\frac{1}{4} \csc ^{3} \theta
\end{aligned}
$$

5. $x^{2}+y^{2}-2 y=0$

$$
\begin{gathered}
r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta-2 r \sin \theta=0 \\
r^{2}-2 r \sin \theta=0 \\
r^{2}=2 r \sin \theta \\
r=2 \sin \theta
\end{gathered}
$$

6. $x=\sqrt{t}$

$$
y=(t-1)^{3}
$$

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{3(t-1)^{2}}{\frac{1}{2} t^{-y_{2}}}=6 \sqrt{t}(t-1)^{2}
$$

